

Status of Higher Order Effects in QCD and Electroweak Cross Sections at the LHC

Radja Boughezal

Argonne National Laboratory

<u>Outline</u>

- Motivation: why we care about QCD at higher orders
- Progress in multileg NLO calculations
- QCD at NNLO and beyond: strong coupling constant and the Higgs cross section
- Conclusions

Why Do We Care about QCD?

 Not all discoveries are easy at LHC, don't always get a resonance peak or sharp kinematic structure

Do we understand the QCD shape Prediction for W/Z + jets?

Can we accurately predict the di-boson production rate?

Collisions at Hadron Colliders

- Factorization: separate hard and soft scales

$$\sigma_{h_1h_2\to X} = \int dx_1 dx_2 \underbrace{f_{h_1/i}(x_1; \ \mu_F^2) f_{h_1/j}(x_2; \mu_F^2)}_{PDFs} \underbrace{\sigma_{ij\to X}(x_1, x_2, \mu_F^2, \{q_k\})}_{partonic \ cross \ section} + \underbrace{\mathcal{O}\left(\frac{\Lambda_{QCD}}{Q}\right)^n}_{power \ corrections}$$
Non-perturbative but $\underbrace{universal}_{PDFs}$:

Process dependent but scattering, fixed-target, apply calculable in pQCD inclusive observables to Tevatron, LHC

• Focus of this talk is a precise understanding of $\sigma_{ij \to X}(x_1, x_2, \mu_F^2, q_k)$

Computing the Cross Section

Benefits of NLO

- · Improved normalization and smaller residual uncertainty
- Better description of distribution shapes

W. :ata

• First serious quantitative prediction achieved only at NLO

w+jets				
number of jets	CDF	LO	NLO	
1	53.5 ± 5.6	$41.40(0.02)^{+7.59}_{-5.94}$	$57.83(0.12)^{+4.36}_{-4.00}$	
2	6.8 ± 1.1	$6.159(0.004)^{+2.41}_{-1.58}$	$7.62(0.04)^{+0.62}_{-0.86}$	
3	0.84 ± 0.24	$0.796(0.001)^{+0.488}_{-0.276}$	$0.882(0.005)^{+0.057}_{-0.138}$	

BLACKHAT: Berger et al., 0907.1984

NLO Difficulties

- NLO calculations become difficult for 2 \rightarrow 3 processes and beyond...
- An example virtual correction:

Factorial growth of diagrams and enormous algebraic expressions, final results often simpler than intermediate steps

Need better organizing principle

- An incredibly fast theory progress for fixed order NLO results with complicated final states. Key idea: obtain one-loop amplitudes using tree amplitudes
 - Generalized unitarity: Bern, Dixon, Dunbar, Kosower (1994); Britto, Cachazo, Feng (2004) any box integral reduction coefficient can be obtained from a quadrupole cut using complex momenta. One-loop amplitudes factorize into a product of four tree-amplitudes
 - The OPP method: Ossola, Papadopoulos, Pittau (2006) improved upon generalized unitarity and made it possible to combine speed and easiness
 - Rational parts of one-loop amplitudes from tree-amplitudes in multiple dimensions: Giele, Kunszt, Melnikov (2008)
- Feynman diagrammatic approach is still providing competitive results
 Bredenstein, Denner, Dittmaier, Kallweit, Pozzorini (2008-2011)

These ideas have been applied by several groups with an amazing outcome!

- Various packages exist for an automatic calculation of one-loop virtual corrections
 - BlackHat (unitarity and multiparticle cuts):
 Berger, Bern, Dixon, Febres Cordero, Ita, Kosower, Maitre (2008)
 - CutTools (reduction at integrand level): Ossola, Papadopoulos, Pittau (2007)
 - GOLEM (semi-numerical form factor decomposition): Binoth, Guillet, Heinrich, Pilon, Reiter (2008)
 - Rocket (generalized D-dim. unitarity): Ellis, Giele, Melnikov, Zanderighi (2008)
 - Samurai (generalized D-dim. Unitarity): Mastrolia, Ossola, Reiter, Tramontano (2010)

 NLO cross sections require real emission matrix elements and a way to extract their implicit IR poles:

$$\mathrm{d}\hat{\sigma}_{NLO} = \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\hat{\sigma}_{NLO}^R - \mathrm{d}\hat{\sigma}_{NLO}^S\right) + \int_{\mathrm{d}\Phi_{m}} \left(\int_{1} \mathrm{d}\hat{\sigma}_{NLO}^S + \mathrm{d}\hat{\sigma}_{NLO}^V + \mathrm{d}\hat{\sigma}_{NLO}^{MF}\right)$$
 Finite, can be integrated numerically Integrated analytically

problem well understood at NLO with various methods:

- Residue subtraction: Frixione, Kunszt, Signer
- Dipole subtraction: Catani, Seymour
- Antenna subtraction: Kosower; Campbell, Cullen, Glover; Daleo, Gehrmann, Maitre

and even automatized in various tools:

SHERPA (Gleisberg, Krauss); MadDipole (Frederix, Gehrmann, Greiner); TeVJet (Seymour, Tevlin); Helac/Phegas (Czakon, Papadopouls, Worek); MadFKS (Frederix, Frixione, Maltoni, Stelzer)

NEW: MadLoop: combines CutTools (virtual corrections) and MadFKS (real emission) into one automated package (Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau)

An amazing theory progress

The NLO revolution Bern, Dixon, Kosower, Berger, Forde, Maitre, Febres-Cordero, Gleisberg, Papadopoulos, Ossola, Pittau, Czakon, Worek, Bevilacqua, Ellis, Kunszt, Giele, Zanderighi, Melia, Rountsh, Denner, Dittmaier, Pozzorini, Kallweit

Single boson	Diboson	Triboson	Heavy flavour
$W + \leq 5j$	$WW + \leq 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$
$W + b\bar{b} + \leq 3j$	$WW + b\bar{b} + \leq 3j$	$WWW + b\bar{b} + \leq 3j$	$t\bar{t} + \gamma + \leq 2j$
$W + c\bar{c} + \leq 3j$	$WW + c\bar{c} + \leq 3j$	$WWW + \gamma\gamma + \leq 3j$	$t\bar{t} + W + \leq 2j$
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma + \leq 3j$	$t\bar{t} + Z + \leq 2j$
$Z + b\bar{b} + \leq 3j$	$ZZ + b\bar{b} + \leq 3j$	$WZZ + \leq 3j$	$t\bar{t} + H + \leq 2j$
$Z + c\bar{c} + \leq 3j$	$ZZ + c\bar{c} + \leq 3j$	$ZZZ + \leq 3j$	$t\bar{b} + \leq 2j$
$\gamma + \leq 5j$	$\gamma\gamma + \leq 5j$		$b\overline{b} + \leq 3j$
$\gamma + b\bar{b} + \leq 3j$	$\gamma\gamma + b\bar{b} + \leq 3j$		
$\gamma + c\bar{c} + \leq 3j$	$\gamma \gamma + c\bar{c} + \leq 3j$		
	$WZ + \leq 5j$		
	$WZ + b\bar{b} + \leq 3j$		
	$WZ + c\bar{c} + \leq 3j$		
	$W\gamma + \leq 3j$		
	$Z\gamma + \leq 3i$		

Selected Recent Highlights

Blackhat collaboration

- Significant reduction of scale variation from NLO result
 - → Important when searching for new physics especially SUSY

Melia, Melnikov, Rontsch, Zanderighi

- Opening angle between leptons in W+W-jj used to distinguish Higgs from background.
- → Significant reduction of scale dependence when NLO result is included

Computing Cross Sections: NNLO and beyond

$$\sigma = \overbrace{\sigma_0}^{LO} + \overbrace{\frac{\alpha_s}{\pi}\sigma_1}^{NLO} + \overbrace{\left(\frac{\alpha_s}{\pi}\right)^2 \sigma_2}^{NNLO} + \dots$$

- · When is NNLO needed?
 - When NLO corrections are large and NNLO is needed to check expansion ($gg \rightarrow H$ is an example)
 - For benchmark processes where high
 precision is needed (Drell-Yan for PDFs,
 e+e- → 3 jets for strong coupling constant,...)

real-virtual

virtual-virtual

- Tet cross sections calculation at NNLO is possible if two ingredients are available:
 - two-loop matrix elements
 - a subtraction method for implicit IR singularities from real radiation

• Two-loop matrix elements Known for two-jet production, vector-boson-plus-jet production and (2+1) jet production in DIS

(Anastasiou, Glover, Oleari, Tejeda-Yeomans; Bern, de Freitas, Dixon; Gehrmann, Remiddi; Glover, Gehrmann)

- Antenna subtraction: a process independent analytical method successfully applied to e+e- \rightarrow 3jets
 - → final-final antennae (A. Gehrmann, T. Gehrmann, N. Glover 2005)
 - extended to initial-final configuration (A. Daleo, A. Gehrmann, T. Gehrmann, N. Glover, G. Luisoni 2010)
 - first results for initial-initial configuration (R. B., A. Gehrmann, M. Ritzmann 2010). Other missing initial-initial antennae are in progress
- Sector decomposition: relies on numerical integration of subtraction terms; many successful applications (Binoth, Heinrich 2002; Anastasiou, Melnikov, Petriello 2003)
 - Recent developments suggested a way of making this method process independent (Czakon 2010)
- qT subtraction for specific hadron collider processes (Catani, Grazzini 2007)

NNLO and Beyond: the Strong Coupling Constant

ullet Precise extractions of $lpha_s(M_Z)$ are obtained from event shapes from LEP and other experients

• Accurate determination of $\alpha_s(M_Z)$ requires both fixed higher-order results and resummation of large Thrust logarithms $\to \alpha_s \log \frac{1}{1-T} \simeq 1$ in the limit T $\to 1$

Strong Coupling Constant Extraction

A. Gehrmann, T. Gehrmann, N. Glover, G. Heinrich

Abbate, Fickinger, Hoang, Mateu, Stewart

- $O(\alpha_s^3)$ correction to e+ e- \rightarrow 3 jets completed (A. Gehrmann, T. Gehrmann, N. Glover, G. Heinrich; S. Weinzierl)
- Resummation through N^3LL available and theory uncertainty is under good control (Abbate @ al; Becher @ al; Chien @ al;)
- · This work leads directly to a reduced uncertainty on the extraction of the strong coupling

Strong Coupling Constant Extraction

- Compilation of $\alpha_s(M_Z)$ values based on results for:
 - e+ e- \rightarrow 3 jets through NNLO in α_s
 - resummation of thrust logarithms trough N³LL
 - mostly LEP data

Survey of Experimental Results for Higgs

Amazing recent activity at Tevatron and LHC on Higgs searches

Lets look at the theory going into these plots

Theory status for gg -> H in the SM

- Higgs production via gluon fusion: dominant mode at LHC and Tevatron
- Inclusive cross section for $gg \rightarrow H$ is under good theoretical control following different approaches

- Results based on:
 - Exact NLO QCD corrections for top and bottom diagrams
 - NNLO and NNLL in the large mT limit
 (Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven; Catani, de Florian, Grazzini)
 - EW corrections in the complex mass scheme (Actis, Passarion, Sturm, Uccirati 2008)
 - mixed QCD-EW corrections
 (Anastasiou, R. B., Petriello 2009)
 - MSTW2008 PDFs as well as results following the PDF4LHC working group recommendations
- Exclusive calculations through NNLO for $H \to YY$ $H \to WW \to l\,l\,v\,\bar{v}$, $H \to Z\,Z \to 4$ leptons (Anastasiou, Melnikov, Petriello 2005; Catani, Grazzini 2008)

CERN Yellow Report 2011

Looking beyond the SM with the Higgs

- · New states can significantly modify the properties of the Higgs
 - squark/gluino loops

Anastasiou, Beerli, Daleo (2008); Muehlleitner, Rzehak, Spira (2008)

- Extra heavy quark families (Anastasiou, R. B., Furlan 2010)
- Color octet scalars (R. B., Petriello 2010)
- Using the calculated signal and branching ratio in the presence of new states and the Tevatron bounds on $\sigma(g\,g\!\to\!H)\!\times\!Br(H\!\to\!WW)$

strong bounds on the parameter space of new physics can be obtained.

Conclusions

- · Much better prepared for the flood of LHC data than expected several years ago
- Multiple NLO methods producing quick results
- W+ 3 jets, W+ 4 jets now known at NLO: an incredible achievement
- Strong coupling constant extracted with NNLO precision: an important input parameter to many LHC studies
- Theory for the Higgs is known to NNLO and beyond; cross section errors under good control